
 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

170

Alternative Approaches to Diagnostic

Intelligence in Process Control Systems
1
 Ifeyinwa Obiora-Dimson

2
 Hyacinth C. Inyiama

3
Christiana C. Okezie

 ifeyinwa29@yahoomail.com hcinyiama@gmail.com christianaobioma@yahoomail.com
1,2,3 Department of Electronic and Computer Engineering,

 Nnamdi Azikiwe University, Awka.

Anambra State, Nigeria.

Abstract

Process control systems usually obtain their

primary inputs from sensors that monitor the

process under control. Use of sensors and

alternative approaches to monitoring processes

with an aim of detecting faults is highlighted. A

process example involving blending of fruit juices,

coolers, heaters, valves etc were also used to

showcase some of these approaches. A

combination of more than one approach is

possible thus taking advantage of the inherent

strength in each approach. This paper should be

of great interest to anyone interested in obtaining

the diagnostic intelligence needed for intelligent

process automation.

Keywords: sensors, diagnostic intelligence,

automation, monitoring, process control

I. INTRODUCTION

Some of the primary inputs to a control system come

from sensors that monitor the process under control

[1]. This paper sheds light on the nature of such

sensors and other means of providing intelligence to

a process control system. The following were

discussed: smart scale, electronic eyes, device timing,

device time out, use of state code in both Algorithmic

State Machine (ASM) chart and flow charts etc.

II. USING SMART SCALE

Consider a situation where fruit juices are being

blended by weight. If the mixer is positioned on a

smart scale, the smart scale will feed its digital output

to a microprocessor/microcontroller each time fruit

juice is added. Consider the blending of four

beverages [2]. The smart scale would have a reading

when the mixer is placed on it. When beverage 1

(BV1) is added, the smart scale will yield the weight

for the mixer and BV1. By sensing the weight input

by the smart sensor, the processor would know when

the weight of the mixer plus BV1 has reached the

desired weight and then cut OFF BV1. A similar
process is used to add beverage 2 (BV2) until the

weight of the mixer plus BV1 and BV2 is as desired.

This process continues until beverages 3 and 4 (BV3

and BV4) respectively are added to the mixer.

Thereafter the mixing will take place and the mixture

is extruded. Suppose the processor turns ON one of

the beverage valves for some time and the weight

output of the smart scale does not change. It means

that the particular valve turned ON is faulty or that its

corresponding beverage tank is empty. This would

then serve as diagnostic information.

 Smart scale
Control
processor

BV1 BV2 BV3 BV4

MIXER

Extrude

Fig 1: smart scale based diagnostic system for beverage mixing

Mixer
motor

mailto:ifeyinwa29@yahoomail.com
mailto:hcinyiama@gmail.com
mailto:christianaobioma@yahoomail.com

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

171

III. USING ELECTRONIC EYES

Sometimes because of the limited number of I/O

lines available to a microprocessor say, there would

not be enough spare lines to feed in the digital pattern

to the processor because of other I/O commitments.

In this case, electronic eyes may be used to reduce

the number of input lines required from the remote

sensor [3]. This scheme works as follows.

a. The scale is spring loaded, such that when

the mixer is empty, the piston blocks only

the uppermost electronic eye (fig 2). When a

measured weight of BV1 say is added, the
piston descends below the first eye and

another electronic eye is positioned where it
is just blocked by the piston. Thereafter

another quantity of a beverage say BV2 of

known weight is added and another

electronic eye is positioned to match the

piston and this continues until electronic eye

for the beverage 4 (BV4) is added. In this

context, an electronic eye is an opto-coupler

or light source/light sensor pair as shown in

fig 2. We see therefore that five signal lines

would reach the processor, one for the mixer

weight alone. Another for mixer and BV1,
another when BV2 is added and so on until

BV4.

3 control I/Ps from the

processor

RD

RD

RD

RD

RD

+5v Scale with
spring loaded
piston

Mixer

PT1

PT2

PT3

PT4

PT5

12k

12k

12k

12k

12k 1k

1k

1k

1k

1k

EE1

EE2

EE3

EE4

EE5

Electronic Eyes (EE) made

up of 5 opto-couplers (light

source/light sensor pairs)

+5v

D0

D1

D2

D3

D4

D7
D6
D5

1 of 8

mux

Figure 2b: Spring loading involving electronic eye measurement

Selected
output to
the
processor

P1

P2

P3

P4

P5

PT
12k 1k

+5v

Pi

Rd

LED

+5v

Spring loaded
piston

Figure 2a: Basic block of fig 2b

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

172

A multiplexer can be used to select each of those

lines at a time [4]. Even if there were to be up to 7

beverages to be blended, given 8 lines of input (the

mixer alone + 7 beverages). These input lines can go

to a 1-out-of-8 multiplexer that can be provided with

control input from three output line of the processor.

This limits the demand of the I/O line to 4 only for

such a complex arrangement, three for the control

and one for the selected bit.

This is only half of a byte compared to one byte that

would have been used if a smart sensor were in use.
Note that the experiment to pour measured weights of

BV1 to BV4 into the mixer so as to adjust the

electronic eyes /sensors BV1 through BV4 must be

done before actual production starts. Thereafter, the

processor during a production run would follow the

following steps:

1. Turn ON the valve to dispense BV1 into

the mixer. Apply the bit pattern to select

the electronic eye output of BV1. Wait

until that electronic eye sees the piston

and its output goes high. Turn OFF the
valve for BV1.

2. Repeat step (a) for BV2, BV3, and BV4

before going into the mixing operation.

After the mixing and extrusion of the product, only

the electronic eye for the mixer weight should be ON.

Others would be turned OFF progressively as the

product is extruded. This can be used to indicate the

end of extrusion. Note that the electronic eye of the

mixer only is adjusted during the experiment to a

position where it just turns OFF when only the mixer

weight is on the scale.

If the Light Emitting Diode (LED) in fig. 2b is rated

20mA then V/Rd =20×10-3A

Or Rd= V/20x10-3 = 5 volts/20x10-3 =5000/20=
250Ω.

Schmitt type NAND type is used to make possible

sharp transitions at the threshold point to logic 1 or 0.

The light sensors are photo transistors that are driven

to saturation when light from the LED reaches the

transistor base. When each photo transistor receives

light, point Pi (i.e P1 or P2 or P3 or P4 or P5) is

grounded via the transistor emitter and is therefore at

logic 0. The 1k pull-up resistor connects the upper

end of the Schmitt-type NAND to logic 1. Therefore

the i/ps to the NAND is (1,0) which yields an o/p of 1

from the NAND which is inverted to 0 at EEi (i.e.

EE1 or EE2 or EE3 or EE4 or EE5) before being fed

to the multiplexer (mux).

When the piston blocks the light rays from an LED

and prevents it from reaching the corresponding

photo transistor PTi (i.e. PT1 or PT2 or PT3 or PT4

or PT5), the photo transistor is cut-off, point Pi jumps

to logic 1 via the 12k resistor (i.e. P1 or P2 or P3 or

P4 or P5) as the case may be, becomes logic 1. The

Schmitt type NAND therefore has its 2 inputs at logic

1 and therefore produces a logic 0 output which is

then inverted to logic 1 before being fed to the

multiplexer. In other words, when the piston blocks

any of the 5 light source/light sensor pairs, the
corresponding output is a logic 1 and logic 0

otherwise. Thus piston present =logic 1 and piston

absent=logic 0

IV. USING DEVICE TIMING AND TIME OUT

TECHNIQUES

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

173

A. Device timing

The time it takes to dispense into the mixer a known

volume of a beverage can be measured by the

processor during experimentation. For example, a

known volume of the beverage that is required in the

mixing operation can be poured into a graduated

cylinder to indicate its volume. Then the graduated

cylinder is marked at the level of the volume and
subsequently emptied of the beverage. The processor

can then be used to convert the dispensing of that

volume of the beverage into a time measurement as

shown in fig 3.

First, the pipe sending the beverage into the mixer is

brought out and placed inside the graduated cylinder

such that when the beverage valve is turned ON, the

liquid dispenses into the graduated cylinder. When

the liquid reaches the mark in the graduated cylinder,

a stop button is pressed whereupon the beverage

valve is turned OFF. The processor then reads the

timer and displays on the LCD for the designer to

see. This is done for each of the beverages that would
be blended before the blending operation starts. This

enables the processor to handle all the timing

involved in the blending in software during actual

production. Note that this scheme does not demand

any extra I/O port for determining the beverage

weights. The processor turns each beverage valve ON

one after the other. For each beverage type, it leaves

the valve ON for the time needed for the

predetermined volume to be added to the mixer.

B. Device time out

Suppose that one of the beverage valves is faulty

such that when the signal to turn it ON is applied by

the processor, it remains OFF and no beverage is

supplied to the mixer. It is pertinent that such a fault

condition is determined otherwise the wrong

proportion of beverages would be mixed. One way of

achieving this is to combine the spring loaded scale

with electronic eyes together with software timing

during beverage dispensing. Thus when the beverage

timing is up, but the signal fed back through the
multiplexer (fig 2b) does not change from LOW to

HIGH, then that beverage valve is deemed to be

timed out. The processor then displays the

information on the LCD and suspends blending until

it is rectified.

V. FAULTY ELECTRICAL DEVICE DETECTOR

FOR VALVES, HEATERS AND COOLERS

A. Valve fault detection
1. Measure liquid level (fig. 4).

2. If LOW, turn valve ON for time T1 long enough to

allow marginal rise in level.

3. Measure liquid level again.

4. If still low, there was no marginal rise in level,

then flag valve fault else

5. If it has risen a bit then the valve is okay, turn

valve on until the liquid gets to desired level .

End.

B. Heater fault detection
1. Measure temperature (fig. 4)

START

 Set timer
OPEN valve

STOP

 Read time

Display ON
LCD

STOP
Fig 3: Dispensing time flow chart

No

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

174

2. If LOW, turn ON heater for time T1 long enough
to allow marginal rise in temperature else go to end.

3. Measure temperature again.

4. If there is no marginal rise in temperature level,

then flag heater fault else turn ON heater until the

desired temperature is achieved.

End.

C. Cooler (or air conditioner) fault detection

1. Measure temperature of environment (fig. 4)
2. If high, turn ON cooler for time T1 long enough to

allow a marginal cooling else go to end.

3. Measure temperature of environment again.

4. If there is no marginal cooling, then flag cooler

fault ELSE turn ON cooler until the desired coolness

is achieved.

End.

VI. USE OF STATE CODES IN ASM CHARTS

In this paper, the present state of the system is

monitored by the processor as the process progresses

from one state to another in its ASM chart. The

pattern that should constitute the next state is output

and fed into the D-inputs of a set of flip-flops such

that when a clock pulse occurs, they constitute the

next present state. This process adds intelligence to

the process control system as the processor uses it to
determine how far the process under control has

progressed in its ASM chart. If a fault should occur at

any time, the processor is in a position to state where

the fault occurred and the likely cause of fault at that

stage. There is an STT corresponding to every ASM

chart or flow chart to facilitate the interpretation of

the machine’s state.

VII. ADDING STATE CODES TO PROCESS

CONTROL SOFTWARE FLOWCHARTS

Every microprocessor/microcontroller based software

has a corresponding software flowchart [5]. A

software flowchart is similar to an ASM chart but

implemented using software rather than hardware.

The researcher has found it very advantageous to

append state codes to software flowcharts such that

as the software progresses to any of the states in the
flowchart, the state code is output and fed back into

the processor to enable it tell were the software has

reached. Should the software end up in an endless

loop maybe as a result of device fault, this can be

detected by monitoring the state code that is fed back.

Fig 5a.

START

 OPN valve

Filled?

 e.t.c

0001

0010

No
Loop

Fig 5a: Endless loop

START

Load device timer

Filled?

Fig 5b: Endless loop

Open valve

Timeout
 Ok

Exit

Press button

Faulty valve or
sensor alarm

1

Measure value

Low

On device

T1

Measure value

Low

On device

Reqd value

1
0

1

0

0
1

1
0

ST0

ST1

ST2

ST4

Fig 4: flow diagram for detecting electrical faults in valves, heaters and coolers and the corresponding pseudo code

Rectified

Faulty device

ST5

ST3
0

1

 Pseudo code
Start: measure value //
associated with valve or cooler
If value is low turn on device
 Else turn off device End if
Load timer T1
Repeat
On device
Until time-out
Measure value
If no change then
Repeat

Sound device alarm
Until error corrected
End repeat: go to start
Else repeat
Turn on device
Until required reading
End repeat
End if
Off device
Off device
Go to start.

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

175

Suppose that in figure 5a the beverage valve is faulty,

when the signal to turn it ON is applied, it does not

come ON. Suppose also the tank that one is trying to

fill with beverage has tank full sensor that provides

feed back to the processor, because the valve is not
ON due to fault, the tank full signal will never go

high because no liquid is going into the tank.

Therefore the process would be stuck in that loop (fig

5a). Because the state code is output and fed back

into the processor, it is easy to detect that the process

is stuck at that particular state code box. A

combination of sensors is required here to detect

sensor fault e.g. device timing.

Device timeout technique can be employed to detect

a situation where the tank full sensor is bad. Consider

figure 5b, device timer is loaded before opening the
valve. If the tank is full before time out, this indicates

that both sensor and valve are in good condition. If

the tank is not filled, and the system is not timed out,

it indicates that the system is still filling. When the

tank is not filled and the system is timed out, this

indicates that both valve and sensor are bad or at least

one of them is bad. The system then generates faulty

valve/sensor alarm. If rectified, a button is pressed

and the system cycle continues else it remains in the

faulty position.

Consider a process control example of an upper tank

refill system (shown in fig 6) used to store raw/new
beverage. The system comprises of a lower tank used

to fill the upper tank via a pump. When new beverage

is poured in the lower tank, a spring loaded piston on

being pressed down by the weight blocks the light
from the Light Emitting Diode (LED). This causes

the raw beverage to be sucked up automatically into

the upper tank via the pump. If the tank indicates full,

the pump does not pump up more beverage.

UBVTF is an indicator for full tank, UBVTL is an

indicator for low tank while NBV is used to indicate

new beverage in the lower tank. BVPMP is used to

indicate beverage pump.

The ASM chart representation of the upper tank

control system is shown in fig 7. It features three

states ST0, ST1, ST2 with state code 000, 001, 010
respectively. The state transition table representation

of this diagram is also shown in table 1 and its fully

expanded version is shown in table 2. Suppose that at

state ST2 in the ASM chart, the system remains in the

loop from ST2, UBVTF=0, NBV=1 for longer than is

necessary, then this is an indication of a pump fault.

Thus if state code is used to monitor this process, the

information contained in the STT (table 2) will

indicate the present state of the system at any point in

time. This would be used to populate the events table.

Thus for such a situation where pump fault occurred,

the present state code will continuously indicate 010
over a long period and this will be indicated in the

events table. This enables the detection of the pump

fault because upper beverage tank is not full

(UBVT=0) and there is new beverage in the lower

tank (NBV=1) the pump is turned ON and yet the

new beverage remains in the lower tank. That can

only happen when the pump has refused to function,

though energized.

UBVTF

UBVTL

NBV

NBVALARM

NBV

BVPMP

CBA
000

001

Fig 7: ASM chart of the upper tank refill system of fig 6

0

0

1
0

1

1

0

1

ST0

ST1

ST2

010

PT

UBVTF

UBVTL BVPMP

NBV

Fig 6: Automatic upper tank refill system

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

176

Table 1: STT of fig 7

Link path Present

state

name

Present

state code

Qualifier Next

state

name

Next

state code

State

output

Conditional

output

U
B

V
F

U
B

V
L

N
B

V

L1

L2

L3

ST0

ST0

ST0

000

000

000

0 – 0

0 – 1

1 – –

ST1

ST2

ST1

001

010

001

0

0

0

0

0

0

L4

L5

L6

ST1

ST1

ST1

001

001

001

0 – 0

0 – 1

1 – –

ST0

ST0

ST2

001

010

001

0

0

0

0

1

0

L7

L8

L9

ST2

ST2

ST2

010

010

010

0 – 0

0 – 1

1 – –

ST1

ST2

ST1

001

010

001

0

0

0

0

0

0

Table 2: Fully expanded STT of table 1

Link path Present

state

name

Present

state code

Qualifier Next

state

name

Next

state

Code

State

output

Conditional

output

U
B

V
F

U
B

V
L

N
B

V

L1

L1

L2

L2

L3

L3

L3

L3

ST0

ST0

ST0

ST0

ST0

ST0

ST0

ST0

000

000

000

000

000

000

000

000

0 0 0

0 1 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ST1

ST1

ST2

ST2

ST1

ST1

ST1

ST1

001

001

010

010

001

001

001

001

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

L4

L4

L4

L4

L5

L5

L6

L6

ST1

ST1

ST1

ST1

ST1

ST1

ST1

ST1

001

001

001

001

001

001

001

001

0 0 0

0 0 1

1 0 0

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

ST0

ST0

ST0

ST0

ST0

ST0

ST2

ST2

000

000

000

000

000

000

010

010

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

L7

L7

L8

L8

L9

ST2

ST2

ST2

ST2

ST2

010

010

010

010

010

0 0 0

0 1 0

0 0 1

0 1 1

1 0 0

ST1

ST1

ST2

ST2

ST1

001

001

010

010

001

1

1

1

1

1

0

0

0

0

0

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

177

L9

L9

L9

ST2

ST2

ST2

010

010

010

1 0 1

1 1 0

1 1 1

ST1

ST1

ST1

001

001

001

1

1

1

0

0

0

By adding state codes to the flowcharts of figure 4, a

flow chart of figure 8 is realized. A state transition

table corresponding to figure 8 is as shown in table 3.

Figure 9 is a microprocessor block diagram

implementation of the system. Here the feedback

C′B′A′ is not used to drive the system even though

they are fed forward as present state CBA. However,

they tell the user where the flowchart is in case of any

eventuality. This is as a result of the fact that at any
point in time, the present state code of the system is

known. Thus when a device fault shown in figure 6

occurs, this would be indicated by the present state

code CBA=011 at that point.

Table 3: STT of fig. 8

Link

path

Present state

name

Present state

code

qualifier Next

state

code

Measure

value

On

device

Faulty

device

L
O

W

T
1

R
E

C
T

IF
Y

R
E

Q
D

V
A

L
U

E

L1

L2

ST0

ST0

000

000

0 - - -

1 - - -

1 0 1

0 0 1

1

1

0

0

0

0

L3
L4

ST1
ST1

001
001

- 0 - -
- 1 - -

0 0 1
0 1 0

0
0

1
1

0
0

L5

L6

ST2

ST2

010

010

0 - - -

1 - - -

1 0 0

0 1 1

1

1

0

0

0

0

L7
L8

ST3
ST3

011
011

- - 0 -
- - 1 -

0 1 1
0 0 0

0
0

0
0

1
1

L9

L10

ST4

ST4

100

100

- - - 0

- - - 1

1 0 0

1 0 1

0

0

1

0

0

0

L11 ST5 101 - - - -

0 0 0 0 0

0

Measure value

Low

On device

T1

Measure value

Low

On device

Reqd value

1
0

1

0

0
1

1
0

ST0

ST1

ST2

ST4

Rectified

Faulty device

ST5

ST3
0

1

CBA
000

001

010

100
011

101

Fig 8: Software flowchart with state codes

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

178

VIII. INDEXING PROCESS STATUS MESSAGE

TABLE WITH STATE CODES

When a process under control is being monitored, the

state code provides information as to where the

process is at a particular time. Therefore by using the

state code to index a pre-stored table in memory, the

state of the process can be explicitly stated on an

LCD or a video display unit (VDU). This is very

helpful since every state code is unique and points to

only one entry in the pre-stored table.

IX. USING A DIGITAL PH METER

When the process under control involves an action

that would be taken only when a mixture reaches a

particular pH composition, a digital pH meter (very

much like the smart scale can be used to obtain a

digital read out of the mixtures’ pH, which is then fed

back to the processor. This will then compare the

feedback information with a set value in order to

determine when it is right to carry out the next stage

of the process control.

The foregoing highlights some of the steps that

should be carefully taken in order to add self-

diagnostic intelligence to any process control system.

 X. CONCLUSION

Alternative approaches for obtaining diagnostic

information used to realize intelligent process control

systems has been explored in this paper. This is by no

means an exhaustive treatment of the subject matter,

but enough has been said to give the reader a firm

grasp of the techniques used. It is hoped that this

paper will encourage indigenous digital process

control engineers to add more intelligence in their

products. This is especially useful now that Nigeria

hopes to become one of the top 20 industrialized

nations by the year 20:20. Intelligent process control

systems would no doubt help, as the nation tries to

take firm control of industrialization processes.

REFERENCES

[1] K. C. Jain and Sanjay Jain, Principles of

Automation and Advanced Manufacturing Systems,

Khanna publishers. 2009. Pp 44.

Qc Dc

Qb

Qa

Db

Da

Clk R

Power
up one
shot

Clock
genera-
tor

Process under control Sensor Device
interface

Signal
conditioning &
amplification

ADC

LCD

C B A
M value

C′ B′ A′

Turns
device
on or off

Internal control software determines when monitored

value is low, has marginally increased or has remained the

same over time

Set value for
Low and
required
maximum

Measured value Key
pad

Fig 9: microprocessor based block diagram implementation of table 3

 IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol. 3, No. 1, February 2013

179

[2] Tocci, Widmer and Moss. Digital Systems, Tenth

edition, Pearson 2009. Pp464-469

[3] H. C. Inyiama, C. C. Okezie and I. C. Okafo,

“Agent Based Process Control System Design”

Proceedings of the peer revieved 2012 national

conference on infrastructural development and

maintenance in the Nigerian environment. pp 234-

252, August 2012.

[4] H. C. Inyiama, C. C. Okezie and I. C. Okafo,

“Complexity Reduction in ROM-Based Process

Control Systems via Input Multiplexing and Output

Decoding”, International Journal of Engineering

Innovations. Paper No: AJUS-2011-115, (in press)

 [5] Curtis D. Johnson, Process Control

Instrumentation Technology, 8th edition. Prentice

Hall of India, New Delhi, 2006. Pp 1-9.

