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Abstract 

Process control systems usually obtain their 

primary inputs from sensors that monitor the 

process under control. Use of sensors and 

alternative approaches to monitoring processes 

with an aim of detecting faults is highlighted. A 

process example involving blending of fruit juices, 

coolers, heaters, valves etc were also used to 

showcase some of these approaches. A 

combination of more than one approach is 

possible thus taking advantage of the inherent 

strength in each approach. This paper should be 

of great interest to anyone interested in obtaining 

the diagnostic intelligence needed for intelligent 

process automation. 

Keywords: sensors, diagnostic intelligence, 

automation, monitoring, process control    

I. INTRODUCTION 

Some of the primary inputs to a control system come 

from sensors that monitor the process under control 

[1]. This paper sheds light on the nature of such 

sensors and other means of providing intelligence to 

a process control system. The following were 

discussed: smart scale, electronic eyes, device timing, 

device time out, use of state code in both Algorithmic 

State Machine (ASM) chart and flow charts etc. 

II. USING SMART SCALE  

Consider a situation where fruit juices are being 

blended by weight. If the mixer is positioned on a 

smart scale, the smart scale will feed its digital output 

to a microprocessor/microcontroller each time fruit 

juice is added. Consider the blending of four 

beverages [2]. The smart scale would have a reading 

when the mixer is placed on it. When beverage 1 

(BV1) is added, the smart scale will yield the weight 

for the mixer and BV1. By sensing the weight input 

by the smart sensor, the processor would know when 

the weight of the mixer plus BV1 has reached the 

desired weight and then cut OFF BV1. A similar 
process is used to add beverage 2 (BV2) until the 

weight of the mixer plus BV1 and BV2 is as desired. 

This process continues until beverages 3 and 4 (BV3 

and BV4) respectively are added to the mixer. 

Thereafter the mixing will take place and the mixture 

is extruded. Suppose the processor turns ON one of 

the beverage valves for some time and the weight 

output of the smart scale does not change. It means 

that the particular valve turned ON is faulty or that its 

corresponding beverage tank is empty. This would 

then serve as diagnostic information. 
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III. USING ELECTRONIC EYES 

Sometimes because of the limited number of I/O 

lines available to a microprocessor say, there would 

not be enough spare lines to feed in the digital pattern 

to the processor because of other I/O commitments. 

In this case, electronic eyes may be used to reduce 

the number of input lines required from the remote 

sensor [3]. This scheme works as follows. 

a. The scale is spring loaded, such that when 

the mixer is empty, the piston blocks only 

the uppermost electronic eye (fig 2). When a 

measured weight of BV1 say is added, the 
piston descends below the first eye and 

another electronic eye is positioned where it 
is just blocked by the piston. Thereafter 

another quantity of a beverage say BV2 of 

known weight is added and another 

electronic eye is positioned to match the 

piston and this continues until electronic eye 

for the beverage 4 (BV4) is added. In this 

context, an electronic eye is an opto-coupler 

or light source/light sensor pair as shown in 

fig 2. We see therefore that five signal lines 

would reach the processor, one for the mixer 

weight alone. Another for mixer and BV1, 
another when BV2 is added and so on until 

BV4. 
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A multiplexer can be used to select each of those 

lines at a time [4]. Even if there were to be up to 7 

beverages to be blended, given 8 lines of input (the 

mixer alone + 7 beverages). These input lines can go 

to a 1-out-of-8 multiplexer that can be provided with 

control input from three output line of the processor. 

This limits the demand of the I/O line to 4 only for 

such a complex arrangement, three for the control 

and one for the selected bit. 

 

This is only half of a byte compared to one byte that 

would have been used if a smart sensor were in use. 
Note that the experiment to pour measured weights of 

BV1 to BV4 into the mixer so as to adjust the 

electronic eyes /sensors BV1 through BV4 must be 

done before actual production starts. Thereafter, the 

processor during a production run would follow the 

following steps: 

1. Turn ON the valve to dispense BV1 into 

the mixer. Apply the bit pattern to select 

the electronic eye output of BV1. Wait 

until that electronic eye sees the piston 

and its output goes high. Turn OFF the 
valve for BV1. 

2. Repeat step (a) for BV2, BV3, and BV4 

before going into the mixing operation. 

After the mixing and extrusion of the product, only 

the electronic eye for the mixer weight should be ON. 

Others would be turned OFF progressively as the 

product is extruded. This can be used to indicate the 

end of extrusion. Note that the electronic eye of the 

mixer only is adjusted during the experiment to a 

position where it just turns OFF when only the mixer 

weight is on the scale. 

If the Light Emitting Diode (LED) in fig. 2b is rated 

20mA then V/Rd =20×10-3A  

Or Rd= V/20x10-3 = 5 volts/20x10-3 =5000/20= 
250Ω. 

Schmitt type NAND type is used to make possible 

sharp transitions at the threshold point to logic 1 or 0. 

The light sensors are photo transistors that are driven 

to saturation when light from the LED reaches the 

transistor base. When each photo transistor receives 

light, point Pi (i.e P1 or P2 or P3 or P4 or P5) is 

grounded via the transistor emitter and is therefore at 

logic 0. The 1k pull-up resistor connects the upper 

end of the Schmitt-type NAND to logic 1. Therefore 

the i/ps to the NAND is (1,0) which yields an o/p of 1 

from the NAND which is inverted to 0 at EEi (i.e. 

EE1 or EE2 or EE3 or EE4 or EE5) before being fed 

to the multiplexer (mux). 

When the piston blocks the light rays from an LED 

and prevents it from reaching the corresponding 

photo transistor PTi (i.e. PT1 or PT2 or PT3 or PT4 

or PT5), the photo transistor is cut-off, point Pi jumps 

to logic 1 via the 12k resistor (i.e. P1 or P2 or P3 or 

P4 or P5) as the case may be, becomes logic 1. The 

Schmitt type NAND therefore has its 2 inputs at logic 

1 and therefore produces a logic 0 output which is 

then inverted to logic 1 before being fed to the 

multiplexer. In other words, when the piston blocks 

any of the 5 light source/light sensor pairs, the 
corresponding output is a logic 1 and logic 0 

otherwise. Thus piston present =logic 1 and piston 

absent=logic 0 

IV. USING DEVICE TIMING AND TIME OUT 

TECHNIQUES 
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A.  Device timing 

The time it takes to dispense into the mixer a known 

volume of a beverage can be measured by the 

processor during experimentation. For example, a 

known volume of the beverage that is required in the 

mixing operation can be poured into a graduated 

cylinder to indicate its volume. Then the graduated 

cylinder is marked at the level of the volume and 
subsequently emptied of the beverage. The processor 

can then be used to convert the dispensing of that 

volume of the beverage into a time measurement as 

shown in fig 3. 

 

 

 

 

 

 

 

 

First, the pipe sending the beverage into the mixer is 

brought out and placed inside the graduated cylinder 

such that when the beverage valve is turned ON, the 

liquid dispenses into the graduated cylinder. When 

the liquid reaches the mark in the graduated cylinder, 

a stop button is pressed whereupon the beverage 

valve is turned OFF. The processor then reads the 

timer and displays on the LCD for the designer to 

see. This is done for each of the beverages that would 
be blended before the blending operation starts. This 

enables the processor to handle all the timing 

involved in the blending in software during actual 

production. Note that this scheme does not demand 

any extra I/O port for determining the beverage 

weights. The processor turns each beverage valve ON 

one after the other. For each beverage type, it leaves 

the valve ON for the time needed for the 

predetermined volume to be added to the mixer. 

B. Device time out  

Suppose that one of the beverage valves is faulty 

such that when the signal to turn it ON is applied by 

the processor, it remains OFF and no beverage is 

supplied to the mixer. It is pertinent that such a fault 

condition is determined otherwise the wrong 

proportion of beverages would be mixed. One way of 

achieving this is to combine the spring loaded scale 

with electronic eyes together with software timing 

during beverage dispensing. Thus when the beverage 

timing is up, but the signal fed back through the 
multiplexer (fig 2b) does not change from LOW to 

HIGH, then that beverage valve is deemed to be 

timed out. The processor then displays the 

information on the LCD and suspends blending until 

it is rectified. 

V. FAULTY ELECTRICAL DEVICE DETECTOR 

FOR VALVES, HEATERS AND COOLERS  

A. Valve fault detection   
1. Measure liquid level (fig. 4).  

2. If LOW, turn valve ON for time T1 long enough to 

allow marginal rise in level.  

3. Measure liquid level again. 

4. If still low, there was no marginal rise in level, 

then flag valve fault else  

5. If it has risen a bit then the valve is okay, turn 

valve on until the liquid gets to desired level . 

End. 

 

B.   Heater fault detection  
1. Measure temperature (fig. 4)  

START 

 Set timer  
OPEN valve 

STOP 

 Read time 

 
Display ON 
LCD 

STOP 
Fig 3: Dispensing time flow chart 
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2. If LOW, turn ON heater for time T1 long enough 
to allow marginal rise in temperature else go to end.  

3. Measure temperature again. 

4. If there is no marginal rise in temperature level, 

then flag heater fault else turn ON heater until the 

desired temperature is achieved. 

End. 

 

C. Cooler (or air conditioner) fault detection   

1. Measure temperature of environment (fig. 4) 
2. If high, turn ON cooler for time T1 long enough to 

allow a marginal cooling else go to end.  

3. Measure temperature of environment again. 

4. If there is no marginal cooling, then flag cooler 

fault ELSE turn ON cooler until the desired coolness 

is achieved. 

End. 

 

 

 

 

 

 

 

 

 

VI. USE OF STATE CODES IN ASM CHARTS 

In this paper, the present state of the system is 

monitored by the processor as the process progresses 

from one state to another in its ASM chart. The 

pattern that should constitute the next state is output 

and fed into the D-inputs of a set of flip-flops such 

that when a clock pulse occurs, they constitute the 

next present state. This process adds intelligence to 

the process control system as the processor uses it to 
determine how far the process under control has 

progressed in its ASM chart. If a fault should occur at 

any time, the processor is in a position to state where 

the fault occurred and the likely cause of fault at that 

stage. There is an STT corresponding to every ASM 

chart or flow chart to facilitate the interpretation of 

the machine’s state. 

VII. ADDING STATE CODES TO PROCESS 

CONTROL SOFTWARE FLOWCHARTS 

Every microprocessor/microcontroller based software 

has a corresponding software flowchart [5]. A 

software flowchart is similar to an ASM chart but 

implemented using software rather than hardware. 

The researcher has found it very advantageous to 

append state codes to software flowcharts such that 

as the software progresses to any of the states in the 
flowchart, the state code is output and fed back into 

the processor to enable it tell were the software has 

reached. Should the software end up in an endless 

loop maybe as a result of device fault, this can be 

detected by monitoring the state code that is fed back. 

Fig 5a. 
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Start: measure value //  
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If value is low turn on device 
  Else turn off device End if 
Load timer T1 
Repeat 
On device 
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Suppose that in figure 5a the beverage valve is faulty, 

when the signal to turn it ON is applied, it does not 

come ON. Suppose also the tank that one is trying to 

fill with beverage has tank full sensor that provides 

feed back to the processor, because the valve is not 
ON due to fault, the tank full signal will never go 

high because no liquid is going into the tank. 

Therefore the process would be stuck in that loop (fig 

5a). Because the state code is output and fed back 

into the processor, it is easy to detect that the process 

is stuck at that particular state code box. A 

combination of sensors is required here to detect 

sensor fault e.g. device timing. 

Device timeout technique can be employed to detect 

a situation where the tank full sensor is bad. Consider 

figure 5b, device timer is loaded before opening the 
valve. If the tank is full before time out, this indicates 

that both sensor and valve are in good condition. If 

the tank is not filled, and the system is not timed out, 

it indicates that the system is still filling. When the 

tank is not filled and the system is timed out, this 

indicates that both valve and sensor are bad or at least 

one of them is bad. The system then generates faulty 

valve/sensor alarm. If rectified, a button is pressed 

and the system cycle continues else it remains in the 

faulty position.  

Consider a process control example of an upper tank 

refill system (shown in fig 6) used to store raw/new 
beverage. The system comprises of a lower tank used 

to fill the upper tank via a pump. When new beverage 

is poured in the lower tank, a spring loaded piston on 

being pressed down by the weight blocks the light 
from the Light Emitting Diode (LED). This causes 

the raw beverage to be sucked up automatically into 

the upper tank via the pump. If the tank indicates full, 

the pump does not pump up more beverage. 

UBVTF is an indicator for full tank, UBVTL is an 

indicator for low tank while NBV is used to indicate 

new beverage in the lower tank. BVPMP is used to 

indicate beverage pump. 

The ASM chart representation of the upper tank 

control system is shown in fig 7. It features three 

states ST0, ST1, ST2 with state code 000, 001, 010 
respectively. The state transition table representation 

of this diagram is also shown in table 1 and its fully 

expanded version is shown in table 2. Suppose that at 

state ST2 in the ASM chart, the system remains in the 

loop from ST2, UBVTF=0, NBV=1 for longer than is 

necessary, then this is an indication of a pump fault. 

Thus if state code is used to monitor this process, the 

information contained in the STT (table 2) will 

indicate the present state of the system at any point in 

time. This would be used to populate the events table. 

Thus for such a situation where pump fault occurred, 

the present state code will continuously indicate 010 
over a long period and this will be indicated in the 

events table. This enables the detection of the pump 

fault because upper beverage tank is not full 

(UBVT=0) and there is new beverage in the lower 

tank (NBV=1) the pump is turned ON and yet the 

new beverage remains in the lower tank. That can 

only happen when the pump has refused to function, 

though energized. 
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Table 1: STT of fig 7 

Link path Present 

state 

name 

Present 

state code 

Qualifier Next 

state 

name 

Next 

state code 

State 

output 

Conditional 

output 

U
B

V
F

 

U
B

V
L

  

N
B

V
 

L1 

L2 

L3 

ST0 

ST0 

ST0 
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000 
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0 – 0 

0 – 1 

1 – – 
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ST1 
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0 

0 

0 

0 
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010 
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ST1 

ST2 

ST1 
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0 

0 

0 

0 

0 
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Table 2: Fully expanded STT of table 1 

Link path Present 

state 

name 
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state code 
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state 

name 
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Conditional 
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L9 
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By adding state codes to the flowcharts of figure 4, a 

flow chart of figure 8 is realized. A state transition 

table corresponding to figure 8 is as shown in table 3. 

Figure 9 is a microprocessor block diagram 

implementation of the system. Here the feedback 

C′B′A′ is not used to drive the system even though 

they are fed forward as present state CBA. However, 

they tell the user where the flowchart is in case of any 

eventuality. This is as a result of the fact that at any 
point in time, the present state code of the system is 

known. Thus when a device fault shown in figure 6 

occurs, this would be indicated by the present state 

code CBA=011 at that point.  

Table 3: STT of fig. 8 

Link 

path 

Present state 
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Measure 
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1 - - - 

1 0 1 

0 0 1 

1 

1 

0 

0 

0 

0 

L3 
L4 

ST1 
ST1  

001 
001 

- 0 - - 
- 1 - - 
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Fig 8: Software flowchart with state codes 
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VIII. INDEXING PROCESS STATUS MESSAGE 

TABLE WITH STATE CODES 

When a process under control is being monitored, the 

state code provides information as to where the 

process is at a particular time. Therefore by using the 

state code to index a pre-stored table in memory, the 

state of the process can be explicitly stated on an 

LCD or a video display unit (VDU). This is very 

helpful since every state code is unique and points to 

only one entry in the pre-stored table.         

IX. USING A DIGITAL PH METER 

When the process under control involves an action 

that would be taken only when a mixture reaches a 

particular pH composition, a digital pH meter (very 

much like the smart scale can be used to obtain a 

digital read out of the mixtures’ pH, which is then fed 

back to the processor. This will then compare the 

feedback information with a set value in order to 

determine when it is right to carry out the next stage 

of the process control. 

The foregoing highlights some of the steps that 

should be carefully taken in order to add self-

diagnostic intelligence to any process control system.  

 X. CONCLUSION  

Alternative approaches for obtaining diagnostic 

information used to realize intelligent process control 

systems has been explored in this paper. This is by no 

means an exhaustive treatment of the subject matter, 

but enough has been said to give the reader a firm 

grasp of the techniques used. It is hoped that this 

paper will encourage indigenous digital process 

control engineers to add more intelligence in their 

products. This is especially useful now that Nigeria 

hopes to become one of the top 20 industrialized 

nations by the year 20:20. Intelligent process control 

systems would no doubt help, as the nation tries to 

take firm control of industrialization processes. 
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